Chaos VII: Strange Attractors

In 1963, Edward Lorenz (1917-2008), studied convection in the Earth’s atmosphere. As the Navier-Stokes equations that describe fluid dynamics are very difficult to solve, he simplified them drastically. The model he obtained probably has little to do with what really happens in the atmosphere. Read More

Chaos II: Vector fields

At the end of the 17th century, Gottfried Wilhelm Leibniz (1646-1716) and Isaac Newton (1643-1727), independently one from the other, invented a brilliant mathematical tool: infinitesimal calculus or differential and integral calculus. Read More

Evolution, Dynamical Systems and Markov Chains

In this post we present a high level introduction to evolution and to how we can use mathematical tools such as dynamical systems and Markov chains to model it. Questions about evolution then translate to questions about dynamical systems and Markov chains – some are easy to answer while others point to gaping holes in current techniques in algorithms and optimization.

Splitting Rent with Triangles

You can find out how to fairly divide rent between three different people even when you don’t know the third person’s preferences! Find out how with Sperner’s Lemma.

Times Tables, Mandelbrot and the Heart of Mathematics

The good old times tables lead a very exciting secret life involving the infamous Mandelbrot set, the ubiquitous cardioid and a myriad of hidden beautiful patterns. Time for the Mathologer to go on a serious fact-finding mission.

A Computational Introduction to Number Theory and Algebra

The mathematical material covered includes the basics of number theory (including unique factorization, congruences, the distribution of primes, and quadratic reciprocity) and of abstract algebra (including groups, rings, fields, and vector spaces). It also includes an introduction to discrete probability theory—this material is needed to properly treat the topics of probabilistic algorithms and cryptographic applications.

The Nature of Code: Simulating Natural Systems with Processing

In this post, there is a playlist of video lectures that supplement the book.

How can we capture the unpredictable evolutionary and emergent properties of nature in software? How can understanding the mathematical principles behind our physical world help us to create digital worlds? This book focuses on a range of programming strategies and techniques behind computer simulations of natural systems, from elementary concepts in mathematics and physics to more advanced algorithms that enable sophisticated visual results.
Read The Book

ˆ Back To Top