Psychic Entities are Not Conserved and Don’t Dissipate

The energy associated with psychic activity is not conserved and does not dissipate. I can hear people’s heads exploding as they read those sentences. Typically when I say things like that, a lot people reject the idea; however, they tend to reject the idea because it seems too counter-intuitive, does not fit their expectations, does not fit their biases, does not fit their paradigm, and other things of that nature. This statement is accurate when you look at the relationship psi has to entropy, disorder, and information along with its higher-dimensional structure.

Entropy and Disorder

There are many different ways to define entropy based on the nuances of how it is used or the paradigm that uses it. Entropy can be defined as uncertainty within a system, how something diffuses and dissipates, or how disordered a system is. In this section, the focus is on how entropy relates to order and disorder.

Order is when entities are arranged in such a way there is some sort of sequence(how strongly the system follows the sequence varies with how ordered it is). An example of a sequence is a list. A list is a collection of elements/entities where the arrangement of the elements matters and repetitions are allowed. Lists are encountered every day when dealing with numbers comprised of more than one digit. For example, the numbers 110, 011, and 101 are lists of the same digits; however, since the ordering is different, it yields different values. The order of a system also allows you to predict with a level certainty what is to be found at some n or k element. While this is a mathematical and abstract example of what order is, we implement order on an every day level when it comes to how we organize things like books.

I, personally, am a bookworm. I have all sorts of books that cover a broad range of things both virtual and physical. I have books on religion, I have books on science, I have various college textbooks, I have science fiction books, I have programming books, I have art books, and I have all sorts of other books. The stack of books keeps growing. Well, if I have this huge collection of books, how am I to find a book I am looking for? The solution is to create some sort of system where maybe the books are divided by genre.

Since I can always add or take away a group of books, I have genres that have an n amount of books. That makes it somewhat easier to locate books, but what if I have a large number of genres? In addition to having books organized by genres, I can have the genres organized alphabetically. Again, since I can always add or remove a genre from my library, I would have a library with n genres. First would be n amount of genres that start with A; second would be n amount of genres that start with B. We would continue this pattern for every new first letter. Continuing the pattern would have multiple genres that start with the same letter having their ordering assigned by comparing the alphabetical rankings of characters in different positions. Having order in my library makes it so I can know the location of a book with a large amount of certainty; however, if books were organized in my library randomly, I would have no clue where a particular book could be.

You could introduce a large amount of entropy/disorder into my library just by randomly knocking all my books off their shelves and switching up the directory structure of my files. The consequence of that would be I would no longer know where my copy of “Heritage of Hastur” is. In other words, I am less able to predict where a particular book is. Disorder is introduced when elements in the domain(allowable values) of the characteristics of a system are not constrained by a particular a sequence. In this case, my books have become disorganized; I may not find a book that starts with A in a genre that starts with A first.

Versus knocking all my books off of my shelf, what if you just played a cruel joke where everyday, you took a few books and swapped them out of sequence. That is analogous to what happens as a consequence of the second law of thermodynamics. An increase in entropy as time moves forward is analogous to the random book swapping. Intuitively, I can fix the disorder by placing the books back in order. In regards to disorder in the universe, the universe will end up in a more disordered state even if you tried to order it, because all physical processes are prone to disorder. That is because of the second law of thermodynamics that is derived from physical symmetries.

It is important to note, that entropy is an emergent property. For example, if you had the digit 0 with only a position of 1. This means that 0 will always be in position 1. Say you had 0 or 1 as possible elements in a position of 1. This means you have two possible combinations. The possibility of where something could be increases as the number possible combinations increases.

Information, Entropy, and Psi

When I am describing how to manipulate things with psychokinesis, I typically say things like I am manipulating the information of the system. What does that mean, though? Information is one of those things that you hear about all of the time, but it is often hard to define. You can think of information as the degree to which we are sure of something. The inverse of this would be entropy in the form of how uncertain we are of something. For example, I am reasonably certain about where the door to my apartment is; however, I am uncertain of who the people reading this article are. If I had never been to someone’s apartment, though, their apartment is the same layout as mine, I can find the bathroom easily because of particular symmetries, so knowledge of things can be attained via symmetries and correlations per how entities are arranged. A more esoteric and abstract concept of information is that it distinguishes one entity from another.

Person. We hear and use that term all of the time. What ways can I describe a person? I can describe a person by their name, their age, their height, weight and other things of that nature. In other words, I have an entity, and that entity has dimensions called attributes. Can Bob be a height? No. Six feet can, though. In other words, there are “allowable” things for those attributes. Those are called domains. So an entity has attributes, and those attributes have domains. Where exactly does information fit in, though?

Say we have a person and a person where I intend for these two entities to be different. Can you tell how they are different based on them being persons? The answer is no. Now say I have a person with a name that is Rayn, a height that is six feet, and a weight of 200 lbs where the other person has a name of Travis, a height of five foot ten, and a weight of 140 lbs. Can you tell me how Rayn and Travis are different now? Yes, you can, because the information contained within the attributes of these two entities allows you to distinguish them. Anything can be viewed abstractly as an entity in this sense, especially things like particles.

Particles have many attributes. I can describe a particle’s density. I can describe a particle’s mass. I can describe a particle’s volume. As in the above example, what distinguishes one particle from another is really the information contained in those attributes. Kinematically(concerning the motion of the particles), the attributes we are concerned with are the time and place of where it is posistioned. Say we have two particles in a gas or liquid and we intend for them at some particular time to be at a specified distance from each other(we want them to be correlated in some intended way). Well, for that to happen, there has to be a series of possible events that lead to what was intended probably being the case. In other words, there has to be a coordination and an ordering of events. By manipulating information pertaining to the position, symmetry, and correlations of a collection of particles, events are constrained by that domain in such a way that possible events are skewed. This violates the second law of thermodynamics and is one of the reasons why entropy does not impact psi.

In manipulating food coloring dye particles in warm water, you are effectively inducing an amount of order, organization, coordination, and symmetry that should not be present in the system. This means the randomness of the system is decreased and the entropy is decreased. This effectively violates the second law of thermodynamics and is an empirical case for psi not being impacted by entropy. Not only is this the case with psychokinesis, but this is also the case in precognition.

There is a sentiment of if you knew then(back in the past) what you knew now, things would be different. That sentiment rings true, but you don’t know now what is going to happen in the future. For example, I am not aware presently of what cars I might drive past on the road tomorrow. In other words, I am uncertain about what the future holds. In the case of precognition, you get knowledge of the future psychically and thus have information in the past and have less uncertainty which allows you to make a decision based on information from the future that causes things to be different thereby implying a reversal. This implies that entropy was decreased and is another violation of the second law of thermodynamics thereby providing another empirical case for psi not being impacted by entropy.

Psi, Higher Dimensions, Conservation, and Symmetry

I remember having a quiz in one of my upper-level mathematics courses. We were studying topologies with hypercubes. The first question was draw to a 4-dimensional hypercube topology. I recall leaning over and asking the person to the right of me “How do you draw something in the 4th dimension?” I got that question wrong, but I now know the answer that turned out to be simple. You take two 3-D hypercubes, put them together, and connect their adjacent nodes/vertices. You get the below figure(this is also called a tesseract). A tesseract is a higher-dimensional structure than say a hypercube, but as can be seen, it is comprised of two hypercubes. This means that the higher-dimensional structure is really an abstraction of the lower ones in the sense of being a superset(tesseracts take what hypercubes have and extend them out).

At the moment of writing this, I am in my apartment. My apartment contains many rooms like bedrooms, a living room, bathrooms, a kitchen, closets, so on and so forth. You can think of my apartment as an abstraction of all these rooms. You can also think of it as a superset. From within my apartment, I have possible access to any other room. To have access to any room or object in my apartment, I first have to have physical access to my apartment, and I have to be able to have physical access from whatever room I am in to get to the other ones. In other words, from within my apartment, I have access to anything else, but things in my living room do not have access to things in my master bedroom. Physical access means the act of being translated(or moved through) across dimensions of space and time to some other coordinates of space and time. The scope of those levels of accessibility can be thought of as domains. One of the reasons why you can conclude that psi takes place on a higher dimension is because psi allows for the accessibility of things outside the constraints of physical domains.

Say I wanted to get information about how someone is doing where they are not physically accessible at the time. Via picking things up psychically, I could get information about their thoughts, moods, where they are at, so on and so forth. I do not know where they are, but in thinking about a particular person, I have a reference to them. My intentionality, or the thought about them, is acting as a type of pointer that references them. Via that reference, an interaction can take place, but that interaction is taking place outside of the domains of space and time. A physical object has to have at minimum a when and a where it is or where to find it and interactions have to take place in when’s and where’s. In this case, there is an abstract reference to something where information can be obtained, and the entity is accessible.

The people who object will say things like how do you know there isn’t some physical way these things are working that we cannot measure, yet? The answer is the symmetry. For example, suppose one of the things I wanted to know was what was going to happen in a location in the future. In order to argue some physical mechanism, we would need to say there is a physical symmetry and physical correlations between the person sensing the future moment and the future moment. As was established above, that is a violation of the second law of thermodynamics, so you run into the wall of trying to reconcile that with Physics without any empirical data. Secondly, I can sense a day into the future or a day into the past without having to be displaced along the coordinates within the domain. This is similar to how in a 2-D world, dimensions of height seem to disappear from the perspective of a two-dimensional being. If that were a graph, there would be singularities all throughout the graph because of the fact you would have me at today and me at tomorrow without passing through time, so it would be two discontinuous points.

A singularity is where a relation takes an infinite value. In this case, as you approach the break in the graph due to missing coordinates that would be mapped to the precognitive action, you get infinitely close without getting to where the precognitive actions starts and ends. This implies that the value blows up to infinity and is thus a singularity. Whenever singularities show up in a theory, it typically means the theory is incomplete. An example of a simple singularity is the output of f(x)=1/x as a partial function where x is 0. f(x) is undefined at x=0; however, as x approaches 0, the value of the function blows up to infinity i.e 1/0.1=10,1/0.01=100, 1/0.001=1000, 1/0.0001=10,000, so the closer you get to 0, the larger the resulting number will be where there is no bound to how big the number can get. A theory being riddled with singularities means that there are major problems with that theory. When you abstract psychic actions beyond the physical domains, those singularities are not there. People might then asks how do you know that is just not a mathematical simplification? Those abstractions have attributes that correspond to empirically observable measurements i.e. whether or not someone perceives information describing the future event accurately. This is not the case; however, if you attempt to model it as happening via physical processes, for as was pointed out, the result are singularities.

As I mentioned in the introduction, when I say things like psychic energy and objects do not dissipate, do not need to be recharged, and their energy is not conserved, people’s heads typically explode. The reason why their heads explode is that energy, conceptually, is often thought of as ephemeral and when used is not available for something else. That fits every day experiences and expectations and ideas contrary to that are counter-intuitive. If you have a hot cup of tea sitting on the counter for a while, as it is cooling, energy is not being lost; rather, heat is moving out of the cup. It is dissipating and becoming disordered. As was pointed out via mentioning empirical cases, psychic activity is not impacted by entropy and can even, in fact, reduce entropy. Furthermore, since the domain of psychic entities is beyond the domain of physical objects, it is not constrained by the same symmetries and therefore the same emergent rules. Symmetrical invariances are why physical energy is conserved.

Energy can be thought of abstractly as something like a budget. Like how money is exchanged for goods and services, energy is exchanged for forces that facilitate influence on things. I give a cashier 60 dollars, and they give me my groceries, so I have the goods, but they have the money. The transaction balances out and everyone is happy. That is analogous to how energy and forces work, but what allows us to be able to turn physical energy into an accounting problem? The answer is Noether’s Theorem.

Noether’s Theorem provides a conservation law for physical energy. The Lagrangian function is a function that describes the state of a system in terms of position coordinates and the corresponding time derivatives. This function is equal to the difference between the potential and kinetic energy of the system. From the Lagrangian, you can derive the rules that govern the motion of things for that system. A symmetry for a lagrangian function is some sort of transformation of coordinates that leaves it unchanged. Noether’s Theorem shows that there are conservation laws associated with differentiable symmetries of the Lagrangian of the system.

The law of conservation of angular momentum is derived from the Lagrangian being unchanged by rotation; therefore, there is a rotational symmetry. The law of conservation of linear momentum is derived from the Lagrangian being unchanged by translations in space; therefore, there is a spatial translation symmetry. The Lagrangian being unchanged by time implies there is a temporal translation symmetry. Since energy is an abstract, scalar quantity associated with the orientation and symmetries of a system, this means that the energy contained in a system is conserved due to these symmetries and that a total measurable property of a system that relates to these symmetries, such as energy, does not change over time. There are no conservation laws if symmetries are broken.

There are no symmetries to break to negate conservation laws if those symmetries are not there to begin with. Empirically speaking, there is no reason to assume that the domains of the higher dimensions that psi operates and exists in have certain symmetries which lead to things like conservation of energy laws especially seeing as the domain is a superset of time. In other words, assuming that psychic energy is conserved is based on intuition and assuming that physical and non-physical processes are analogs. This is not to say that no symmetries and rules exist, but it is to say that without observing them in action, we cannot really conceive of them, so assuming that a physical rule like conservation of energy applies to higher-dimensional entities is intuitive, yes, but there is no justification.

Helpful Videos

Noether’s Theorem and The Symmetries of Reality
What is Energy?
The Misunderstood Nature of Entropy
Singularities Explained

Related Post

Leave a Reply

Your email address will not be published. Required fields are marked *

ˆ Back To Top